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Abstract

To test the hypothesis that protamine in¯uences calcium movement in endothelial cells, we
measured the concentration of intracellular free calcium ([Ca2�]i) in cultured porcine aortic
endothelial (PAE) cells in Krebs solution (2�5 mM Ca2�, pH 7�4) at 37�C, by fura-2
¯uorimetry.

The basal [Ca2�]i of PAE cells was 113� 18 nM (n � 6). Protamine increased [Ca2�]i in
a concentration-dependent manner (EC50, the concentration having 50% of the maximum
effect, 1�4� 0�3 mg mLÿ1, n � 6). The response of PAE cells to 100 mg mLÿ1 protamine
(330� 80 nM, n � 6) was blocked by a Ca2� chelator, 5 mM glycoletherdiaminetetraacetic
acid (EGTA; 131� 16 nM, n � 6), and by a non-selective Ca2� channel blocker, 3 mM

Co2� (134� 14 nM, n � 6).
These results suggest that Ca2� in¯ux through cell-membrane Ca2� channels is mainly

responsible for the protamine-induced Ca2� elevation.

Protamine is commonly applied intravenously to
neutralize heparin used as an anti-coagulant for
patients during extra-corporeal circulation. How-
ever, administration of protamine often induces
systemic hypotension, which is hazardous to such
patients in an unstable cardiovascular state after
cardiopulmonary bypass (Frater et al 1984; Kirklin
et al 1986; Katz et al 1987). A recent study using
vascular tension bioassay revealed that vascular
relaxation induced by protamine is dependent on
endothelium and that the inhibition of the nitric
oxide (NO) pathway reduced endothelium-derived
vascular relaxation induced by protamine, sug-
gesting that protamine stimulates endothelial cells
to release NO (Pearson et al 1992). However, the
direct action of this compound on vascular endo-
thelial cells has not been discovered. Because the
generation of NO from endothelial cells is preceded
by an increase in intracellular calcium concentra-
tion ([Ca2�]i), which is required for the activation
of the constitutive isoform of NO synthase (NOS)
(Moncada et al 1991), we examined the protamine-
induced change in [Ca2�]i of endothelial cells.

Materials and Methods

Materials
DMEM, RPM1 1640, N-(2-hydroxyethyl)piper-
azine- N 0-(2-ethanesulphonic acid) (HEPES), ampi-
cillin, kanamycin, and trypsin were purchased from
Sigma (St Louis MO). Foetal bovine serum was
from JRH Bioscience (Lenaxa KS). Protamine was
obtained from Shimizu (Shizuoka, Japan). Diio-
doacetyl low-density lipoprotein was from Funa-
koshi (Tokyo, Japan). The acetoxymethyl ester
form of fura-2 (fura-2=AM) was from Dojindo
Laboratories (Kumamoto, Japan). Verapamil
hydrochloride was from Eisai (Tokyo). Disodium
ethylenediaminetetraacetate (EDTA) and glycol-
etherdiaminetetraacetic acid (EGTA) were from
Katayama (Osaka, Japan). Other chemicals were of
analytical quality.

Cell culture
Isolation and primary culture of porcine aortic
endothelial (PAE) cells were performed as descri-
bed elsewhere (Az-ma et al 1995, 1996). The cul-
ture medium used was RD medium (1 : 1 (v=v)
RPMI 1640 medium±Dulbecco's modi®ed Eagle's
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medium (DMEM)) supplemented with bicarbonate
(2 mg mLÿ1), HEPES (15 mM), ampicillin
(90 mg mLÿ1), kanamycin (90 mg mLÿ1) and 10%
(v=v) foetal bovine serum equilibrated with 5%
CO2 in air under a humidi®ed atmosphere at 37�C
(pH 7�4). PAE cells were subcultured at a 1 : 3 split
ratio in collagen-coated 25 cm2 plastic ¯asks.
Endothelial cell identity was con®rmed by the
uptake of diiodoacetyl-low-density lipoprotein, by
means of ¯uorescence microscopy (> 99% of the
cells) (Doan et al 1994). The resulting subcon¯uent
monolayers of PAE cells (passage 2) were har-
vested with trypsin (0�125% (w=v)) and EDTA
(0�02% (w=v)) in Ca2�- and Mg2�-free Dulbecco's
phosphate-buffered saline (PBS). After washing
with the culture medium and centrifugation at 200 g,
the cells were resuspended at a density of 1±
26 105 cells mLÿ1 and seeded on ®bronectin-
coated glass cover-slips placed in 24-well cluster
dishes (0�5 mL=well). Experiments were performed
within 24 h of the cells reaching con¯uent mono-
layers.

Measurement of [Ca2�]i

The [Ca2�]i of PAE cells was measured by use of a
¯uorescent Ca2� indicator dye, fura-2, as pre-
viously described, with modi®cation (Az-ma et al
1995). PAE cell monolayers attached to cover-slips
were loaded with the acetoxymethyl ester form of
fura-2 (3mM) in the culture medium for 1 h under a
humidi®ed atmosphere of 5% CO2 in air at 37�C.
The cells were then washed three times with Krebs
solution containing 2�5 mM Ca2�. The ¯uorescence
of fura-2 was measured by ¯uorescence spectro-
metry; the spectrometer (CAF-100; Japan Spec-
troscopy, Tokyo, Japan) was equipped with a
thermostatic holder combined with a micro mag-
netic stirrer (Wickham et al 1988). Cell-attached
cover-slips were placed at an angle of 45� to both
excitation and emission light paths in a quartz glass
cuvette ®lled with Krebs solution (2 mL, 37�C)
stirred at 1000 rev minÿ1. The ¯uorescence inten-
sity ratio with excitation at 340 or 380 nm and
emission at 500 nm was continuously recorded on a
strip-chart recorder, and was converted to [Ca2�]i

by use of an in-vitro calibration curve obtained
from standard Ca2�±EGTA solutions containing
3 mM fura-2-free acid. After 10 min pre-equilibra-
tion of PAE cells with Krebs solution to settle the
baseline of ¯uorescence intensities, protamine or
other agents, or both, were added cumulatively to
the cuvette. All measurements were performed
within 1�5 h of addition of fura-2.

Statistical analysis
Data are expressed as means� s.e.m. Multiple
comparison was performed by analysis of variance
followed by the t-test with Bonferroni's correction
(P< 0�05).

Results

Application of protamine to PAE cells induced
a concentration-dependent increase in [Ca2�]i

(Figure 1). The threshold concentration of prota-
mine which increased [Ca2�]i was 0�2 mg mLÿ1.
The maximum [Ca2�]i elevation was obtained by
addition of protamine at �60mg mLÿ1. The per-
cent±response curves of [Ca2�]i against the con-
centration of protamine were ®tted to Hill's equa-
tion, and the EC50 for protamine (i.e. the
concentration having 50% of the maximum effect)
was found to be 1�4� 0�3 mg mLÿ1 (Figure 2). The
basal [Ca2�]i of PAE cells was 113� 18 nM,
whereas the maximum [Ca2�]i induced by 100
mg mLÿ1 protamine was 330� 80 nM (n � 6, Fig-
ure 3A). In contrast, preloading of PAE cells with a
Ca2� chelator, EGTA (5 mM), for 2 min before
addition of 100 mg mLÿ1 protamine almost com-
pletely inhibited [Ca2�]i elevation (131� 16 nM,
n � 6; Figure 3B). We also con®rmed that prota-
mine did not increase [Ca2�]i when Ca2�-free
Krebs solution was used (n � 3, data not shown).
The increase in [Ca2�]i induced by protamine was
also blocked by addition of a non-selective Ca2�-
channel blocker (Ikebuchi et al 1991), 3 mM CoCl2
(Co2�; 134� 14 nM, n � 6; Figure 3C). It is unli-
kely that Co2� quenched the Ca2�-associated
¯uorescence of fura-2 because a transient increase
in [Ca2�]i was observed in the presence of Co2�

when PAE cells were stimulated with 100 nM brady-

Figure 1. Changes in [Ca2�]i (nM) in cultured porcine aortic
endothelial cells in Krebs solution (2�5 mM Ca2�, pH 7�4) on
cumulative addition of protamine at 37�C. [Ca2�]i was mea-
sured by fura-2 ¯uorimetry. This trace is representative of
similar results obtained from three separate cell preparations
cultured from different donors. Points at which protamine was
added are indicated by `�'.
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kinin, a known agonist of IP3-dependent Ca2�

release from intracellular stores (data not shown,
and Az-ma et al 1995). These ®ndings suggested
that the protamine-induced elevation of [Ca2�]i was
caused by Ca2� in¯ux through cell-membrane Ca2�

channels and not by Ca2� release from intracellular
stores. After addition of protamine, the [Ca2�]i of
PAE cells continued to rise to a level higher than
that observed before protamine administration.
Addition of 10 mM verapamil, an L-type voltage-
gated Ca2�-channel blocker (Roveri et al 1992), did
not in¯uence the sustained increase in [Ca2�]i,
whereas Co2� reduced [Ca2�]i to the level observed
before the application of protamine (Figure 3D).
Preloading of PAE cells with verapamil for 5 min
also failed to inhibit the protamine-induced [Ca2�]i

elevation (n � 3, not shown).

Discussion

This study has shown that protamine increases
[Ca2�]i in PAE cells. The increase in [Ca2�]i

induced by protamine was blocked by extracellular
Ca2�-free conditions, indicating that Ca2� in¯ux
from the extracellular space is responsible for the
[Ca2�]i elevation. The suppression of protamine-
induced [Ca2�]i elevation by a non-selective Ca2�

channel blocker, Co2�, further demonstrated that
the protamine-induced Ca2� in¯ux passes through
cell-membrane Ca2� channels. The type of prota-
mine-sensitive Ca2� channel was unidenti®ed in
this study because we could not ®nd a speci®c
blocker of these channels. We observed only that
the L-type voltage-gated Ca2� channel is not
involved in the protamine-induced Ca2� move-
ment; this is partly con®rmed by our previous
®ndings (Az-ma et al 1995) and those of other
investigators (for review see Adams et al 1989) that
endothelial cells have no voltage-gated Ca2�

channel.
The direct action of protamine on the function of

endothelial cells is supported by an early observation
of Pearson et al (1992) who found that protamine
concentration-dependently induces endothelium-
derived vascular relaxation in canine coronary,
femoral and renal arteries contracted by prosta-
glandin F2a. These investigators also showed that
this effect of protamine was suppressed by
NG-monomethyl L-arginine, a competitive inhibitor
of NOS, suggesting that endothelial cells have a
speci®c protamine receptor responsible for the pro-
tamine-induced release of NO from endothelial cells.

It is well known that the production of NO is
triggered by agonist-binding to receptors to
open Ca2� channels existing both in the cell
membrane and in the intracellular Ca2� stores,
because an increase in the [Ca2�]i of endothelial
cells is required for activation of the constitutive
isoform of NOS (Moncada et al 1991). Thus,
insight into the mode of cytosolic Ca2� movement

Figure 3. The inhibitory effect of the Ca2� chelator glycol-
etherdiaminetetraacetic acid (EGTA) and the non-selective
Ca2�-channel blocker, Co2�, on protamine-induced elevation
of [Ca2�]i in cultured porcine aortic endothelial cells. Prota-
mine (100mg mLÿ1) was added to the cells in Krebs solution
(2�5 mM Ca2�, pH 7�4) at 37�C without inhibitor (A) and after
2-min preloading with 5 mM EGTA (B) and 3 mM Co2� (C).
The differential effects of a voltage-gated Ca2� channel
blocker, verapamil (10 mM), and Co2� (3 mM), on protamine-
induced [Ca2�]i elevation of porcine aortic endothelial cells is
also shown (D). The agents were added as indicated in the
®gure. [Ca2�]i was measured by fura-2 ¯uorimetry. The
examples are representative of similar results obtained from
at least three separate cell preparations cultured from different
donors. `�' indicates times of addition of 100mg mLÿ1 prota-
mine (P), 5 mM EGTA (E), 3 mM Co2� (Co), and 10 mM

verapamil (V).

Figure 2. Effect on [Ca2�]i in cultured porcine aortic
endothelial cells of the concentration of protamine in Krebs
solution (2�5 mM Ca2�, pH 7�4) at 37�C. [Ca2�]i was measured
by fura-2 ¯uorimetry. Data are expressed as percent change,
assuming basal [Ca2�]i of 0%, and [Ca2�]i after addition of
60 mM protamine of 100%. Data are expressed as means
� s.e.m. of results from six separate experiments. The porcine
aortic endothelial cells used were obtained from three separate
cell preparations cultured from different donors.

PROTAMINE AND CA2� MOVEMENT IN ENDOTHELIAL CELLS 951



induced by protamine is important to understanding
the mechanism of action of this compound. It is
thus of interest to note that agonist±receptor
binding of the common vasoactive compounds (e.g.
bradykinin, thrombin, etc.) causes Ca2� release
from IP3-dependent intracellular Ca2� stores. In the
current study, the abolition of protamine-induced
[Ca2�]i elevation by Co2� or EGTA suggested that
Ca2� release from intracellular Ca2� stores is not
involved in the Ca2� movement induced by prota-
mine. However, it is unlikely that intracellular
Ca2� stores do not exist in PAE cells because we
con®rmed that bradykinin (1±100 nM) induced a
transient [Ca2�]i elevation of PAE cells in the
presence of EGTA or Co2�. This result puts into
question the hypothesis that endothelial cells have a
speci®c protamine receptor.

Other investigators have also suggested that a
positive electrical charge on protamine in¯uences
endothelial cell function. Akata et al (1993a, b,
1995) reported that the effect of protamine on
endothelium-derived vascular relaxation was
counteracted by heparin, a negatively charged
protein, suggesting that the polycationic property of
protamine interferes with the endothelial cell
membrane. Evidence is growing that the function
of Ca2� channels of several types of cell is regu-
lated by the redox state of thiol residues of channel
proteins (Coetzee & Opie 1992; Roveri et al 1992;
Boraso & Williams 1994). More recently, we have
reported that the redox state of cell-membrane
Ca2� channels in endothelial cells is accessible
from the extracellular space (Az-ma et al 1999).
Because the redox alteration of thiol groups is
associated with electron transport to its acceptors,
electrically charged compounds such as protamine
might interfere with the functional regulation of
Ca2� channels. Further investigation is required to
resolve the exact mechanisms of action of prota-
mine in in¯uencing Ca2� movement in endothelial
cells.

In conclusion, this study has shown the direct
action of protamine in increasing [Ca2�]i of endo-
thelial cells. The increase in [Ca2�]i was caused
mainly by Ca2� in¯ux through cell-membrane
Ca2� channels.
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